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Abstract

The choice of the centering parameter and the step-length parameter are the
fundamental issues in primal-dual interior-point algorithms for linear programming.
Various choices for these two parameters have been proposed that lead to polyno-
mial algorithms. Recently, Zhang, Tapia and Dennis derived conditions for the
choices of the two parameters that were sufficient for superlinear or quadratic con-
vergence. However, prior to this work it had not been shown that these conditions
for fast convergence are compatible with the choices that lead to polynomiality;
none of the existing polynomial primal-dual interior-point algorithms satisfies these
fast convergence requirements. This paper gives an affirmative answer to the ques-
tion: can a primal-dual algorithm be both polynomial and superlinearly convergent
for general problems? We construct and analyze a “large step” algorithm that pos-
sesses both polynomiality and, under the assumption of the convergence of the
iteration sequence, }-superlinear convergence. For nondegenerate problems, the

convergence is actually @-quadratic.

1 Introduction

We consider linear programs in the standard form:

minimize Iz
subject to Az = b, (1.1)
x>0,

where ¢,z € R*, b€ R™, A € R™"(m < n) and A is assumed to have full rank m.

The first-order optimality conditions for (1.1) can be written

Az — b
AT)\+y—c :Oa (:E,y) >0, (12)
XYe



where A and y are dual variables, X = diag(z), Y = diag(y) and e has all components
equal to one. To facilitate our presentation, we will eliminate the dual variable A from
the above system (though such an elimination may not be advisable from a practical
point of view). Let B € R("™*" be any matrix such that the columns of BT form a

basis for the null space of A. Pre-multiply the second equation by the nonsingular matrix

[AT BT]T. Notice that BAT = 0, so

A AATI 4+ Ay —
0= (AT/\—}-y—c): (y—e)
B By — Bce

Since AAT is nonsingular, A is uniquely determined once y is known. Removing the
equation for A, we arrive at the following 2n by 2n nonlinear system with non-negativity

constraints on the variables:
Az —b
F(z,y)=| By—Bc | =0, (z,y) >0. (1.3)
XYe

By the feasibility set of problem (1.3) we mean:
Q= {(z,y): ¢,y € R", Az = b, By = Bc,(z,y) > 0}.

A feasible pair (z,y) € § is said to be strictly feasible if it is positive. In this work we
tacitly assume that strictly feasible points exist.

It is easy to see that for (z,y) € Q, ||F(z,y)||: = 27y which can be shown to be the
duality gap for problem (1.1); we will use the duality gap as the merit function for our

algorithm, i.e., the criterion that tells us when one feasible point should be preferred to

another.

Mathematically speaking, the concepts of polynomiality and rate of convergence are
incompatible. Polynomiality is meaningful only for algorithms that converge in a finite
number of steps, while rate of convergence is defined only for algorithms that take an

infinite number of steps to converge. When we say that an interior-point algorithm is
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polynomial, we have in mind integral (or rational) data and finite termination. On the
other hand, when we say the same algorithm is linearly convergent, for example, we do
so in the traditional numerical analysis sense. With this understanding, we can discuss
polynomiality and rate of convergence of an algorithm at the same time.

It is clearly desirable to develop algorithms that possess both polynomiality and fast
asymptotic convergence, or in other words, both good global behavior and good local
behavior. To our knowledge, the only prior work in this direction was Yamashita [10].
Based on the multiplicative penalty function of Iri and Imai [2], Yamashita constructed
a polynomial primal algorithm and demonstrated its quadratic convergence under the
following two assumptions: (i) the optimal objective value is known, and (ii) the iteration
sequence converges to a nondegenerate optimal vertex. The first assumption is in general
not realistic. The second assumption is very restrictive because most practical problems
are degenerate.

The objective of this work is to construct a primal-dual interior-point algorithm for
problem (1.1) that possesses both polynomiality and fast convergence under more realistic
and less restrictive assumptions. We construct such an algorithm and show that it takes
at most O(nL) iterations to reduce the duality gap to 2-%. Moreover, we demonstrate
that this algorithm gives quadratic convergence for nondegenerate problems and gives
@-superlinear convergence for degenerate problems.

Subscripts will be used to distinguish values of quantities at a particular iteration and

superscripts will indicate components of vectors. We also use the notation:

min(v) = min »* and max(v) = max v’
1<i<n 1<i<n

for a vector v € R™. The symbol ||-|| denotes the £, norm unless otherwise stated. We will
use the standard big-O notation in this paper; in particular, for a sequence {v;} C R"
and a positive sequence {ax} C R, vy = O(«;) implies the existence of positive constants

B and ko such that ||vi|] < Bay for all k > k.

The paper is organized as follows. In Section 2, we describe a general interior-point
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algorithmic framework for problem (1.1) based on the nonlinear system (1.3) and give a
brief survey of existing results for algorithms that fall into this framework. In Sections 3
and 4, we specify our procedures for determining the step length and for choosing the
centering parameter. We state our algorithm in Section 5. Global linear convergence (and
polynomiality) is established in Section 6. Quadratic convergence for nondegenerate
problems is established in Section 7, and superlinear convergence for all problems is

established in Section 8. Concluding remarks are given in Section 9.

2 General Algorithm

Algorithm 1 (General Algorithm)
Given a strictly feasible pair (zo,y0). Fork=0,1,2,..., do

Step 1 Compute the Newton step

N
Az

NlT —[F"(zx, y1)] 7 F (2, yi)
Ayk

and the centering step

Az¢ 0
“ | = Lal g [F' (i, yi)] :
Ay¢ e

Step 2 Choose o € (0,1) and form the combined step

Az Azl Az¢
= + o |-
Ay Ayy Ayg

Step 3 Choose 7 € (0,1) and set ay = Ty, where

. -1
= min(X; ' Az, V7 Aye)'




Step 4 Compute the new iterate

Tkt1 Tk Az
= —+ oy
Ye+1 Yk Ay
We will now briefly comment on this general algorithmic framework. From a direct

calculation, we have
A0
Flz,y)=| 0 B |. (2.1)
Y X
Since we have assumed that A has full rank, it is a straightforward matter to verify
that F'(z,y) is nonsingular for any positive pair (z,y). In addition, relation (2.5) below
guarantees that &; > 0. Hence the iterates produced by Algorithm 1 are well-defined.
Notice that the restriction a; < &; guarantees that the iterates remain strictly feasible.

Moreover, we have the following useful relationships:

Yidzl + Xe Ay = —XiYie, (2.2)
YkAa:f + XkAy,? = %x{yke, (2.3)
YAz, + XpAyy = =X Yie+ ak%wfyke, (2.4)
AzfAy = 0, (2.5)
TipaUerr = ziyk(l = (1 — on)aw). (2.6)

We have stated Algorithm 1 in this form for notational convenience. It is not difficult
to verify that identical iterates {(zx,yx)} can be generated using (1.2) instead of (1.3).
For this case, there is no need for introducing the matrix B (see [11] for example).

From (2.6) we see that Algorithm 1 is a descent algorithm for the duality gap
|F(z,y)|l: = zTy. Moreover, the duality gap is reduced at iteration k by a factor
1 — ag(l — o4) < 1; thus, linear convergence will be obtained if {a;} is bounded away
from zero and {0} is bounded away from one. In addition, Q-superlinear convergence

will be obtained if a(1 —ot) — 1. Observe that we have direct control over the choice of
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or. However, we do not have the freedom of choosing «; uniformly bounded away from
zero, since we must enforce the requirement o < & and & is not directly under our
control.

A number of existing primal-dual algorithms fit into the above general algorithmic
framework with different choices for the parameters o and «a;. For example, in the
primal-dual algorithm of Kojima, Mizuno and Yoshise [3], o is a constant and o is
a particular function of ox. They showed that their algorithm requires at most O(nL)
iterations to reduce the duality gap by a factor of 2=L. Other examples include the Todd
and Ye [9] primal-dual potential reduction algorithm and the Monteiro and Adler [7]
path-following primal-dual algorithm. Todd and Ye’s algorithm uses the choice

Jn
vn+v

where v is a constant. In Monteiro and Adler’s algorithm,

O =

§
op=1——

Vn
where ¢ is a constant (Monteiro and Adler actually used § = 0.35 in their analysis). In
both algorithms, a rather short step-length «y is required. Furthermore, both of these
algorithms require at most O(y/nL) iterations to reduce the duality gap to 27%. This
is the best complexity bound obtained for linear programming so far. Observe that all
three algorithms use constant . In each of the three cases if o denotes the constant

value of oy, then @-superlinear convergence is possible (see (2.6)) only if

1
l—0

o — ,

which seems extremely unlikely.

In analyzing the convergence of Algorithm 1, a central quantity is

zlyi/n

min( Xy Yie) (2.7)

Nk =



Since ;ll-mfyk is the average value of the components of X;Yxe, it is clear that n; > 1. In

all the above mentioned polynomial algorithms, it is essential that the sequence {7;} be

bounded.

Recently, Zhang, Tapia and Dennis [11] showed that under appropriate assumptions,
Algorithm 1 has fast convergence. The following two theorems summarize their main
results. By a nondegenerate vertex of (1.1), we mean a feasible point of (1.1) that

has exactly m positive components and the corresponding m columns of A are linearly

independent.

Theorem 2.1 (Zhang, Tapia and Dennis)
Let (z.,y.) be a solution of problem (1.3) and {(zk,yx)} be generated by Algorithm 1.

Assume

(i) strict complementarity holds at (z.,y.),

(ii) z. is a nondegenerate vertex of (1.1),

(iif) ox = O(afyx) and 7, = 1 — O(2Tys).

If {(zk,yx)} converges to (z.,y.), then the convergence is Q-quadratic.

Theorem 2.2 (Zhang, Tapia and Dennis)
Let (z.,y«) be a solution of problem (1.8) and {(xk,yx)} be generated by Algorithm 1.

Assume

(i) strict complementarity holds at (z.,y.),
(ii) the sequence {ni} is bounded,

(iti) ox — 0 and 7, — 1.

If {(zk,yx)} converges to (z.,y.), then the duality gap sequence {z¥yx} converges to zero

Q-superlinearly.



With some additional work, one can actually demonstrate that the sequence { X, Yze}
component-wise converges to zero ()-superlinearly.

Several assumptions have been made in the above theorems. Our numerical experi-
ments have led us to believe that the strict complementarity assumption is not restrictive.
On the other hand, the nondegeneracy assumption is quite restrictive since degeneracy
exists in most real-world problems. For degenerate solutions, the best convergence that
has been established is Q)-superlinear, as stated in Theorem 2.2.

Although many of the existing polynomial primal-dual interior-point algorithms sat-
isfy assumption (ii) of Theorem 2.2, none of them satisfy assumption (iii), i.e., oy — 0
and 7, — 1. In fact, in several polynomial algorithms, for example Todd and Ye’s and
Monteiro and Adler’s, the values of o) are close to one. From Zhang, Tapia and Den-
nis [11] it follows that these algorithms will most likely have slow Q-linear convergence.
Hence while their global behavior may be excellent, their local behavior can be improved.

Recently, in a number of performance-oriented primal-dual algorithms, for example
the ones implemented by Choi et. al. [1], McShane et. al. [6] and Lustig et. al. [5],
very small values of o} were used and also long steps were taken. Impressive numerical
results were obtained from these implementations though polynomial complexity bounds
are not known. Hence while their local behavior may be good, their global behavior is
in question from a theoretical standpoint.

In this work, we develop a primal-dual interior-point polynomial algorithm that gives
quadratic convergence for nondegenerate solutions and superlinear convergence for de-
generate solutions. Hence, from a mathematical point of view, both the global and the
local behavior will be good. This new algorithm is still of a theoretical nature. However,
the fact that polynomiality and quadratic or superlinear convergence can be achieved
simultaneously by one algorithm provides motivation for practical implementations of

the conditions o4 = O(2Ly:) and 7, = 1 — O(zTy;) for fast convergence.
kY k



3 Determining the Step-Length

In the previous section we mentioned that both polynomiality and superlinear conver-
gence essentially require that the sequence {n;} be bounded. The most straightforward
way of accomplishing this objective is to explicitly enforce a uniform bound on the quan-
tity

xkj-;lykﬂ/n
min(Xx41Ye41€)

Nk41 =

during the process of choosing the step-length o4; i.e., ask that

1 _ min(Xk+1Y}c+1e) >

= T
Nk+1 Tpp1Yh+1/n

(3.1)

for some v > 0.

Following the notation used in [3], let

ze(e) = ok + alze,  ye(@) = yr + alyy,
fl@) = Xi(a)Yi(ae, fir(e) = Lar(e) yu(a), (32)
Fit(a) = min(fi(e), fi**(a) = max(fi())-
Note that the above quantities actually also depend on the centering parameter o because
both Azj and Ay are functions of o (see Step 3 of Algorithm 1). However, since we will
always choose o before we determine a, it will suffice to consider these quantities only
as functions of « for a fixed value of o.
Whenever a = 0, we will drop the argument from the above functions. For example,

zr = z((0), f2'* = f£**(0) and so on. From the formula for the iterates (Step 4 of
Algorithm 1), we also have xx41 = zx(ox), f2¥9 = f2"*(cx) and so on.

Using the above notation, we choose the form of condition (3.1) as requiring oy to

satisfy .
)
— > Y, a>0, (3.3)
(@)
where
T € [1 SR/ F), 0<y < fm/f <1 and 7,7 < 1. (3.4)
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In the case 1/no > 7, we allow 1/n; to decrease monotonically as long as 1/n; > ~.

In the following development, we will use some of the techniques developed by Kojima
et al in [3].
Using (3.2), (2.4), (2.5), (2.6) and letting

sk = diag(Azy)Ayy,

we have
file) = fi = (fi = onfi*)a + o’ (3.5)
and
e (@) = fi"[1 — (1 —ok)a]. (3.6)

Hence, fi(c) is a quadratic (so f""(a) and f"**(a) are piecewise quadratic) and f2**(a)
is linear. Clearly, if ff*(&x) = 0, then (2x(éx), yx(éx)) will solve problem (1.3). In the
sequel, we always assume f2¥¢(&x) > 0.

For notational convenience, let us introduce the piecewise quadratic function
h(e) = [ (@) — wfi(a). (3.7)
It follows that condition (3.3) is equivalent to
h(a) >0, a>0. (3.8)
In determining oy we will use the following quantity:
o) ¥ min{a > 0: k(a) = 0}. (3.9)
Recall that &y is defined in Step 3 of the general algorithm (see Section 2).

Lemma 3.1 The quantity o} is well defined and of € (0, &%). Moreover, condition (3.3)
is satisfied for all o € (0, ]].
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Proof: Let us examine the function h(a). It follows from the definitions of e and &;

that
h(0) = fi™™ — pfE¥e 2 0
and
h(Gi) = F™ (&) — WS (én) = =S (6x) < 0.
Hence it follows from the continuity of A(a) that h(a) has a root in [0,4x). When
h(0) > 0, h(e) obviously has a root in (0,dx). When h(0) = 0, it can be verified that
the right-derivative of A(a) at a = 0 is

R'(0%) = —(fif" — orf2®) + (1l — op) f2e
= [(1 = w)or + (% — S/ f2ve) fove
= (1 - ’)’k)a'k > 0.

Therefore, h(a) > 0 for sufficiently small but positive a. Consequently, o > 0.
Since h(éx) < 0, we have o] < &. It is evident that h(a) > 0 for a € (0,0]], i.e.,
condition 3.3 is satisfied. This completes the proof. o

An equivalent expression for o] is
af = min{a > 0: fi(a) — 1 f>%(a)=0,i=1,2,...,n}. (3.10)

The computation of o] involves calculating the roots of at most n quadratics and therefore
requires O(n) operations.
In addition to a lower bound for {fi(ax)/f2"*(cx)} (i.e., condition (3.3)), we also

impose an upper bound on these quantities; namely, we require ay to satisfy

r*(a)
ave S Fk) a > 0, (311)
I (a)
where
'y e [f,’c“ax/f,?ve,l"], 1< f®/f8°*<T'<n and LTy > 1. (3.12)

Since fi(@)/f2*¢(a) < n for all i, condition (3.11) will be redundant if Ty = n. Our
reason for introducing condition (3.11) is to improve our complexity bound. We do not

feel that enforcing this condition will have much practical significance.
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Following the treatment of condition (3.3), we introduce the piecewise quadratic func-
tion
H(a) ¥ fP™(a) - T4 f7*(a). (3.13)
It follows that condition (3.11) is equivalent to
H(a) <0, a>0. (3.14)
We will also use the following quantity in determining ay:
o ¥ min{a > 0: H(a) = 0}. (3.15)
Analogous to Lemma 3.1 for condition (3.3), we have the following lemma for condi-

tion (3.11).

Lemma 3.2 The quantity of is well-defined and of € (0,4x). Moreover, condition

(3.11) is satisfied by all o € (0, ).

Proof: The proof is similar to that for Lemma 3.1, so we omit it. O

Analogous to the expression (3.10) for condition (3.3), we have for condition (3.11)
ap =min{a > 0: fi(a) - Tef2" (@) =0, i = 1,2, ... ,n}. (3.16)
For the sake of simplicity, we will enforce the conditions
v <1/2 and Ty > 2. (3.17)

The specific values in (3.17) do not constitute a loss of generality because they will only
affect expressions for some constants in our analysis. These values of vk and T’y will result
in much simplified expressions for those constants.

From (2.2), we see that for fixed o4 a larger step length o will produce a larger
reduction in the duality gap. So it is always desirable to take the largest step-length
possible as long as other requirements are satisfied. Our procedure for determining the

step-length ay is summarized as follows.

13



Procedure 1 (Step-length Criterion)

Given positive constants v and T such that

0 <y < min(1/2, [0/ f3%), max(2, f5/f3) <T < n. (3.18)
Step 1 Choose i € [y, min(1/2, fi*/ fz*)] and T € [max(2, fio**/ fz*°), T,
Step 2 Compute of = min{a > 0: fi(e) — % f2*(a) =0, i = 1,2,...,n} (ie., (3.9)).
Step 3 Compute o, = min{a > 0: fi(a)—Tif(a) =0, i =1,2,... ,n} (e, (3.15)).
Step 4 Let o), = min(a},a}).

We notice that the above procedure of choosing the step-length bears a certain simi-
larity to a procedure recently proposed by Mizuno, Todd and Ye [8].

Now we prove two technical lemmas that will be needed in the later development.

Lemma 3.3 For a € [0,1],

Fa) > fER (R gy f2%)a + min(sg)o?,

po(@) S = (0 - ok fi")a + max(sg)a’.
Proof: We first look at the linear part of fi(a). Since for all ¢,

fio  a=0,

orfi¥e, a=1,

it is evident that for « € [0, 1]
P = (T = o) < = (- o fB)e < I~ (f2 — o4 f2)a.
For the quadratic terms, we clearly have

min(s;)a? < sja? < max(sg)a’.
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By adding the quadratic terms to their corresponding linear parts, we finish the proof.

O

It is worth noting that eTs; = 0 by (2.5). Hence, min(s;) < 0 and max(sg) > 0. In

the sequel, we will adopt the convention that % = 4o00.

Lemma 3.4 Let oy, be given by Procedure 1. Then

1 — ave P _ 1 ave
Qg Z min 1’ ( 7’?)ka]€ , ( k )akfk . (319)
— min(sg) max(sy)
Moreover,
ok > min (1, Ok " ) . (3.20)
2| skloo

Proof: From (3.9), o} is a positive root of ff(a) — vk f2**(a) for some index i. Noticing
that for a € [0, 1] fz**(e) is positive, and using Lemma 3.3, for a € [0,1], v; > 0 and for

all index 7, we have

file) = mfere(a) 2 fi™ — (fi™ — o f7*)a + min(si)a? — 7, f2(<)
(FE = f2) (L — @) + (1 = e )or firee + min(s;)a?  (3.21)
> (1 — ye)or fi¥a + min(sg)a?.

If min(sk) = 0, then A(e@) > 0 for & € (0, 1]. Therefore, we will have ] > 1. Now assume
min(sx) < 0. Then the quadratic on the right-hand side of the last inequality in (3.21)

has a unique positive root

(=)o fpre
Qaf = " .
— min(sg)

Hence, if o] <1, from (3.21) we must have a) > a@. This proves that

] > min (1, (1= w)onfi ) : (3.22)

— min(sg)

Similarly, we can prove that

a} > min (1, (3.23)

(D — 1)akf;;”e) |

max(sk)

Combining (3.22) and (3.23), we obtain (3.19).
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Finally, (3.20) follows from the facts that ||s|lec = max{— min(s,), max(sx)} and

S1—7k<1§1-‘k—1.

DN | =

This completes the proof. O

4 Choosing the Centering Parameter

We will use the following notation:

e =X Az, @ =Y Ay,
pi = XAz, of =Y Ay, (4.1)
PP = XA, of =Y Ay,

and

wr = gax (1(m2) (@) 1) (@)1 2R (@)1 1) ()] (4.2)

Lemma 4.1 If foin/fave > v, then

wr < n/vyl.

Proof: Multiply both sides of (2.3) by (XkYk)_% and consider the square of the ¢3-norm
of both sides. Using (2.5) and (4.1), we obtain

(X Ye)ZpE 115 + (X Yi) Rl 112 = (2aFye) e (XiYi) e
or equivalently after dividing both sides by %xfyk,
_1 -1
1T pE1% + 1T 2 g2 113 = &7 Tre, (4.3)

where T}, = %x{yk(XkYk)'l is a diagonal matrix. Our assumption implies that the
maximum diagonal element of {7} is bounded above by 1/v and the minimum diagonal

element of {77!} is bounded below by . Therefore, from (4.3) we have

|(p%)] < Vn/v and |(¢7)'] < v/n/7.
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Using the same technique, we can prove that

(oYY < Vafv < Vajy and (g < \/n/y < Vil

From the definition of w; and the above estimates, Lemma 4.1 follows immediately. O

We now state our procedure for choosing the centering parameter oy.

Procedure 2 (Centering Parameter Criterion)

Given

oge(0,1), pl=5—, p*>
Step 1 Compute wy, from (4.2).
Step 2 Compute p} = min(p*, o /wy).
Step 3 Choose pi € [(p' + p})/2, pi]-

Step 4 Let o} = prws.

(4.4)

Since o4 = prwy and pi € [p, pt], we have oy, € [p'wr, plwr]. In addition, we require

that o be greater than the midpoint of the interval. This requirement is needed in our

proof of superlinear convergence. It is evident that o is bounded away from one because

o < 0 < 1. The reasons why the centering parameter is so chosen will hopefully become

clear as our discussion proceeds.

5 Algorithm Description

Now we formally state our primal-dual interior-point algorithm.

Algorithm 2 Suppose given a strictly feasible pair (zo,y0). Choose positive constants

and I' such that (see (3.18))

0 <y < min(1/2, fg™/f5*), max(2, f§*/f5"

17
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and choose o € (0,1). Set p' =20 /2n and p* > v2a/n (see (4.4)). For k=0,1,2,...,
do

Step 1 Compute the Newton step and the centering step from Algorithm 1.
Step 2 Choose o by Procedure 2 and form (Azg, Ayx) from Algorithm 1.
Step 3 Choose ay, by Procedure 1.

Step 4 Form (xk41,Yk+1) from Algorithm 1.

The procedure for determining the step-length o) can be implemented in an effective
manner. [ts cost is somewhat higher than the ratio test that is used in most of the
practical implementations. On the other hand, our procedure for choosing the centering
parameter oj requires extra work when compared to the more standard method. The
standard practice is to choose the centering parameter prior to computing the steps,
then one only needs to solve once for the combined step (Newton step plus the centering
parameter times the centering step). Since Algorithm 2 requires the information obtained
from the Newton step and the centering step to choose the centering parameter, it requires

one to solve for the two steps separately and then combine them.

6 Global Linear Convergence

Theorem 6.1 (Global Linear Convergence)

Let {(xk,yx)} be generated by Algorithm 2. Then

Teayer < (1— 8/n)alys,

for some § satisfying

5> U(l - 0)72

16I°

18



Proof: We need to estimate ||si||co in (3.20). Let the index j be such that ||sk]|co = |57].
Observe that

Islloe = AT AYL] = [(zip) (viak)| = (z302) (Prdi)]

IN

max(XiYie)||diag(pr) gk oo

P\ diag(py + oxpl)(gh + opE)loo
;naxwk(l +o_k)2

4fmaxg,

IN

IN

Hence, it follows from (3.11), (3.20) and Procedure 2 that

ave I
ar > min (1, %) > min (1, g—;) > g—r (6.1)
Substituting p' (see (4.4)) into the above expression, we obtain
2
ay
> .
= 16I'n

The proof is completed by substituting the above inequality into (2.6) and noticing that
o < o. O
The following corollary follows immediately from Theorem 6.1. By a standard argu-

ment, it leads to polynomiality assuming integral data.

Corollary 6.1 Assume that a strictly feasible pair (zo,yo), constants v and T, both in-
dependent of n, are chosen such that (3.18) is satisfied and zTyo < 2L, where L > 0 and
v is a positive constant independent of n. Then in at most O(nL) iterations, Algorithm 2

will produce (z,yx) such that x{yk < 2-L
Proof: From Theorem 6.1,
zryr < (1= 68/n)Fzly, < (1 — 6/n)*2°E.

Let (1 — 8/n)*2"L' = 2-L and take the natural logarithm of both sides. We have k =
—(In2)(1 4+ v)L/In(1 — 6/n). Observe that for z € (0,1)

0 :L'k
Inl-z)=-> =< —=.
k=1 k
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Therefore,

k< (In2)(1+4+v)L/(6/n) = O(nL).

This completes the proof. a

7 Quadratic Convergence

In this section, we will apply Theorem 2.1 to establish that under strict complementarity
and nondegeneracy assumptions our algorithm converges @)-quadratically. It can be
shown that the nondegeneracy and strict complementarity assumptions at optimality
imply the uniqueness of both primal and dual solutions. We have already established
convergence of the duality gap sequence to zero in the preceding section. With the
uniqueness, it can be shown that the convergence of the duality gap implies that of the
iterates to the unique solution (z.,y.) > 0. What we must verify is assumption (iii) of

Theorem 2.1; namely,
or = O(zyx) and 7 =1 — O(zTys).
Since 7 = ag/dy, for the latter it suffices to show that
ér — 1 and & — ax = O(zyp). (7.1)

The following lemma will be useful. It is a slightly modified version of Lemma 3.2 in

[11]. We refer interested readers to the original paper for its proof.

Lemma 7.1 (Zhang, Tapia and Dennis)
Let (z.,y«) be a solution of problem (1.8) and {(zk,yx)} be generated by Algorithm 2.
Let pYY,p$, qlY and ¢ be defined by (4.1). Assume

(i) strict complementarity holds at (z.,y.),

(ii) z. is a nondegenerate vertez of (1.1),
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Then

0 0
Pk = +O0(iwe), = o,
—1 [XkYke]'"+1

+ O(xz‘yk)a

zTyp/n
-1 \ E

Ty /n
-1 (5 )

and

alyx/n

-1 L
. +O0(ziy), ¢f = [X"’g‘e] + O(2i yr),

s
x
I

0 0

where the number of zeros is m in p} and p§, and n —m in ¢~ and <.
Now we are ready to state and prove our quadratic convergence theorem.

Theorem 7.1 (Quadratic Convergence)
Let (z.,y.) be a solution of problem (1.8) and {(zx,yx)} be generated by Algorithm 2.

Assume

(1) strict complementarity holds at (z.,y.),

(ii) z. is a nondegenerate vertez of (1.1),

(iii) p* is sufficiently large, e.g., p* > 16T

Then {(zx,yx)} converges to (z.,y.) Q-quadratically.

Proof: We first prove oy = O(zIyx). Observe from Lemma 7.1 that for each index i
k

either the “p” terms ((py)* and (p§)*) or the “¢” terms ((¢)' and (¢F)") are O(xFyx)
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while the other terms are bounded. Thus, the quantity wy (see its definition (4.2)) is
O(z¥yi). So is o because o) < plwg.

Since wy — 0, from the choice of p¥ in Step 2 of Procedure 2 we have for k sufficiently
large

1
pi=p" and pp > S(p' + p¥). (7.2)

We observe that if p* is sufficiently large, e.g., p* > 16T, (i.e., oy is not forced to approach
zero too quickly), then the step-length oy will eventually be equal to or greater than one,

as can be seen from (6.1).
Since or = O(2Ty;) and (m{yk/n)/ min(X;Yie) is bounded, the elements of p; and
qx are either O(z{yx) or —1 4+ O(zTy;). Therefore,

min(X; ' Az, Y, Ayy) = min(py, ) = —1 + O(zTyy). (7.3)

By examining the definition of & in Step (3) of Algorithm 1, we see & = 1 + O(zFyi).

Consequently, for k sufficiently large we have
1<a,<é,=1+ O(mfyk)

This implies (7.1) and completes the proof. O

8 Swuperlinear Convergence

In this section, we will apply Theorem 2.2 to establish Q-superlinear convergence of
Algorithm 2 for general problems. We must show that assumption (iii) of Theorem 2.2
holds; i.e.,

or — 0 and 7, — 1.

For the latter, it will suffice to show &; — 1 and &, —a; — 0. Without the nondegeneracy
assumption, we can no longer use Lemma 7.1. For technical reasons, we must restrict

further the choice of py.
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Denote the length of the interval [p, p] by m¢. It follows from (4.4), Step 2 of

Procedure 2, and Lemma 4.1 that

2
")/0'
> — 8.1
P = n ( )
Thus,
2
def o 1 7o
= —p 22— > 0. 8.2
Tk Pk p*2n ( )

Let ¥; be the following set of 2n points
Sk = {8 /() , — (@) /() i=1,2,...,n)
and define the distance from o to the set ¥; as
dist(o, ) = min{jo — | : ¢ € Xi}.
We choose o according to Procedure 2 with the additional restriction that
dist(ok, i) > mrwi/(8n + 4). (8.3)

In other words, we require not only
o € [0.5(p' + pit)wr, pir] (8:4)

but also that o4 be bounded away from the set £ by at least miwi/(8n +4). Since {m}
is bounded away from zero, we see from (8.3) that {dist(ot, %)} is bounded away from

zero if {wi} is bounded away from zero.
The purpose of introducing condition (8.3) is to avoid the situation where P =
(pR) 4+ o (p)’ (say) converges to zero but (p¥) and (pf) do not. Although we believe

that this situation is extremely unlikely to happen, we have not been able to rule it out.
Lemma 8.1 The set of o} ’s satisfying (8.3) and (8.4) is nonempty.

Proof: The length of the interval in (8.4) is 74wy /2. Partition this interval into 2n + 1

equal sub-intervals, each having length mywy/(4n + 2). If the interior of any one of the
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sub-intervals does not intersect X, then the midpoint of that sub-interval will satisfy
(8.3) and (8.4). Since X has only 2n points, it cannot intersect the interiors of all the
2n + 1 sub-intervals. This proves the lemma. 0o

Now we are well-equipped to prove our superlinear convergence theorem.

Theorem 8.1 (Superlinear Convergence)
Let (z.,y.) be a solution of problem (1.3) and {(zk,y:)} be generated by Algorithm 2

with the restriction (8.3) on the centering parameter oy. Assume
(i) strict complementarity holds at (z.,y.),
(ii) p* is sufficiently large, e.g., p* > 16T .

If {(zx,yx)} converges to (z.,y.), then the duality gap sequence {zTyx} converges to zero

Q-superlinearly.

Proof: We first prove o — 0. It suffices to show w; — 0.
Let z¢ > 0. Obviously,

1 x§c+1 1 i
PR S T A ).
This implies p;, — 0, because {a;} is bounded away from zero. On the other hand, if
z! = 0, then y¢ > 0 by strict complementarity. The same argument, interchanging the

roles of pj, and g, gives ¢i — 0. Therefore, for each index 1, either
P =) + o) =0 or gi = (¢f') + ou(¢f) — 0. (8.5)

We will prove wy, — 0 by contradiction. Suppose the opposite. Then, there exists a
subsequence {wy,} C {wi} that is bounded away from zero. This in turn implies, from
(8.3), that {dist(ox,,2k,)} is bounded away from zero (recall that =) is bounded away
from zero).

We have shown that for each index ¢, either pi — 0 or ¢ — 0. Without loss of

generality, assume p, — 0. We now show that {(pf0 )} converges to zero. Otherwise,
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there exists a subsequence {(pf,)'} C {(pf,)'} such that {|(p{ )’|} is bounded away from

zero. For this subsequence,
P, = (i)' + o (B5) = (b)) o, + (pR))*/(p5)'] — 0.

This implies
on + (pi)'/(P,) — 0.

However, this cannot be true because {dist(ox,, Lx,)} C {dist(ox,, Lx,)} is bounded away
from zero. Hence, (pf )' — 0.

Now in view of (8.5) we also have (p} ) — 0. Similarly, we can prove that if ¢} — 0,
then we have both (¢ff)! — 0 and (¢2)? — 0. Therefore, for each index i, either (py)!
and (pf )’, or (¢7)* and (q,f’;)i converge to zero. Since all these sequences are uniformly
bounded (see the proof of Lemma 4.1), this leads to wy, — 0 (see definition (4.2)),
contradicting the hypothesis that {w,} is bounded away from zero. This proves that
wr — 0. Consequently o) — 0.

Now we prove a; — 1. Note that (2.4) can be written as
Pe+ qr = —e + opaiy(XiYe) e
Since %x{yk(XkY}c)‘le is bounded above by 1/, as o, — 0, we have
Pk + g — —e.

We have shown that for each 1, either pj, — 0 or ¢i — 0. Therefore, all p} and ¢i converge
to either 0 or —1. This again implies that & — 1 (see (7.3)). In view of (6.1) and (7.2),
aj will eventually be equal to or greater than one if p* is sufficiently large, e.g., p* > 16T.
Hence,

1< o, <éy — 1.

This completes the proof. a
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9 Concluding Remarks

In this paper, we have shown that the two fundamental parameters in primal-dual
interior-point algorithms for linear programming can be chosen in such a way that both
polynomiality and superlinear convergence are achieved. If the solution is a nondegener-
ate vertex, then in addition to superlinear convergence we have quadratic convergence.

The current practices in some of the state-of-the-art implementations of primal-dual
interior-point algorithms have the following common fundamental features. First, they
allow iterates to be very close to the boundary of the positive orthant; second, they
phase out the centering steps at a fast pace. The theory established in Zhang, Tapia
and Dennis [11] has already provided theoretical justification for such a practice from
the viewpoint of fast convergence. This paper provides further theoretical justification
for such a practice from the viewpoint of polynomiality. In summary, one can indeed,
under reasonable conditions, accomplish both objectives — good global behavior and
good local behavior.

We recently learned of a new result by Giiler and Ye [4]. When applied to linear
programming, it says that condition (3.1) will guarantee strict complementarity for any
limit point of the iteration sequence generated by an interior-point algorithm. This
result nicely complements the Zhang-Tapia-Dennis theory (i.e., Theorems 2.1 and 2.2)
and therefore, the strict complementarity assumptions in Theorems 7.1 and 8.1 are no

longer necessary.
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